|
In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, ''modulo'' ''p'', ''p''2, ''p''3, and so on. == Definition == For a prime number ''p'' let ''K'' be a p-adic field, i.e. , ''R'' the valuation ring and ''P'' the maximal ideal. For denotes the valuation of ''z'', , and for a uniformizing parameter π of ''R''. Furthermore let be a Schwartz–Bruhat function, i.e. a locally constant function with compact support and let be a character of . In this situation one associates to a non-constant polynomial the Igusa zeta function : where and ''dx'' is Haar measure so normalized that has measure 1. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Igusa zeta-function」の詳細全文を読む スポンサード リンク
|